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Abstract

Bottleneck identification is a relevant tool for continuous optimization of production lines. In this work, we implement a data-
driven discrete-event simulator (DDS) based on experimental distributions, obtained from real historical data. The DDS allows to
analyse the behavior of a balanced manufacturing line at Bosch Thermotechnology, under different hypotheses. It shows that some
scenarios perceived as likely to increase output may actually decrease production metrics, reveals the importance of line injection
rates, and leads to the need for adequate real time bottleneck forecasting tools, which allow shift managers intervention in a useful
time frame. Eleven prediction models are tested, where a random forest and a multi-layer perceptron attain the best performances
(above 95% in all metrics). This data flow is operationalized through a micro-services pipeline which is briefly discussed.
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1. Introduction

This work demonstrates how to provide prediction capabilities to a bottleneck framework which uses very basic
input data and as such is relevant in balanced manufacturing lines through the validation of different scenarios using
data-driven discrete-event simulation. The methods described here will later be applied in a concrete pipeline at a
Bosch Thermotechnology plant, which uses the same abstraction concept to compute higher level metrics based on
different levels of information as explored in [1]. It constitutes a new layer on top of a recent work [2].

Bottleneck mitigation is a core problem in almost every industry [3]. Simulation is a powerful tool to be used
together with optimization processes as illustrated in [4], specially when traditional discrete-event simulation based
on distribution models is replaced by discrete-event simulation based on fitted distributions from real data. In this last
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application, the authors have resorted to expert knowledge for bottleneck identification while simulating line output
which was then optimized through a genetic algorithm. Operators were reassigned to different workstations based on
their skill set level which greatly improved overall line productivity. These were particularly manual stations with very
little automation and where the operator’s ability had a very large impact. This can also be used to test different load
balancing algorithms [5]. Such approach is not so well suited when the line is already quite balanced, and bottleneck
shifts are quite dynamic in nature.
Simulation can also stem from lean mapping tools such as value stream mapping (VSM), a visual modelation of value
stream operations which acts as a screenshot. In [6], the authors propose making the VSM more useful by using it as
an input for a system dynamics framework. In a similar manner, [7] also makes use of VSM coupled with Siemens
Tecnomatix Plant Simulation software. The authors of [8] follow a similar approach. In these examples, an extensive
effort is done in the VSM part and physical modelling alone in order to identify bottlenecks and eliminate them. In
this article, the authors will present a more lightweight methodology which does not require any previous mapping
nor a significant training effort for people to use it. Instead, the data gathered from the line will automatically reveal its
typology making it much less labor intensive. The work [9] also makes use of Siemens Tecnomatix Plant Simulation
software along with the use of a prediction algorithm based on Petri nets and a fuzzy algorithm. Most of these use
cases are based on sets of constraints. We will see later on that the simulation proposed here has as basis the statistical
distributions of historical data of processing times and injection rates.

Applications of data-driven discrete-event simulations to a balanced manufacturing line will show that bottleneck
identification is not as useful as its application in an unbalanced manufacturing line. To actively act and improve
performance of a balanced manufacturing line, bottleneck prediction is a requirement. The work [10] mentions a
prediction algorithm based on actual buffer levels. Another approach is used in [11], where complex network theory is
used. In [12], authors introduce a prediction method based on the autoregressive integrated moving average algorithm
(ARIMA) using as data from a manufacturing execution system (MES) as an input. These authors encourage future
research directions with other algorithms that may convey more accurate results, which will be presented in later
sections.

Using this literature review as basis, it is clear that there is room for new research and that this is still an area
where significant innovation can be pursued and achieved. Here the authors will be dwelling in the area of bottleneck
prediction in balanced production lines in real time and assessing how simulation scenarios can be used to infer their
usefulness. Real data from a manufacturing line of Bosch Thermotechnology will be used for this use case analysis.

2. Methodology

In this section, a production line of Bosch Thermotechnology (Bosch TT), the business unit facility of residential
hot water located in Aveiro, Portugal, is analysed using the tools presented in previous sections. In this Bosch TT
plant, three main groups of products are manufactured: water heaters (electric and gas), boilers and heat pumps. Each
one possesses a large variety of references, depending on the type of material, technology and functionality. Such
variety affects the entire production line flow and, consequently, its global productivity.

2.1. Mathematical Model

There are several ways to formally model workflows related with manufacturing production lines (MPL), as Petri
nets variants or activity diagrams variants. However, fundamental issues turn their application on MPL too complex
or lacking relevant features [13]. Several of these models assume that tokens are produced or consumed by actors
and do not have explicitly the notion of layers of queues and their associated nodes [14]. Tokens are represented by
the circles in grey, nodes are represented by the white circles in grey outline and the queues are represented by the
rectangles split in three.

Therefore, an abstract model is introduced in order to: (a) precisely model a MPL under clear assumptions; (b)
compute a state-space that completely represents the state of the process at each instant of time; (c) produce metrics
for bottleneck identification under a minimal level of information; (d) normalize and extend the application of these
methods to other use cases; (e) to be the theoretical support of the data-driven discrete-event simulator.
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Fig. 1. Queue directed graph adaptation according to the formal assumptions.

Mathematically, any MPL outline will be represented by a generalization of a directed graph that is shown in
Figure 1. The queue directed graph (QDG) is simple enough to model all the common situations in a manufacturing
line and works with just minimal information being fed from a MES.

Running a scientific review shows that a myriad of methods for bottleneck identification have been introduced and
used [15]. The vast majority of them ignores the data collection part altogether. Indeed, some of these methods happen
to be derivations of others in order to compensate missing data or data not fitting to the required structure. With this
being said, it is a must to define what one may establish as a minimum requirement for such calculations. In the
event that other data is available, it may be possible to include it in order to further increase its impact in bottleneck
detection.

It seems evident that a bare minimum approach should consist in a set of records with an identifier for the location
(node), an identifier for the part/product (token), and a timestamp, corresponding to the departure time of a token from
a node.

Using the state-space of a QDG it is possible to calculate the so-called measuredTime. This designation stems from
the fact that such times are measured from the evolution of queues and departures times from nodes. In other words,
for each token, it is the interval between consecutive departures of nodes minus the duration of time the token stayed
in the corresponding queue.

The average active period method (AAPM) is a metric which uses the average of the active periods of a process
and detects fluctuations to it. Formally, this may be defined as:

ΨAAPM = argmax
i∈{1,...,sN−1}

Φi with Φi = mean({ζnode
w,i ∈ R

+
0 }), (1)

where ζnode
w,i is the active time of a node i at the instant of time w. Commonly, the notion of active periods is associated

to the processing times obtained by hardware devices. In fact, AAPM can be seen as a family of methods, where
variants are obtained by changing the underline notion of active period. We consider the following useful variants:

• Average Measured Period Method (AMPM): the average is made over the periods of measuredTime.
• Average Queue Period Method (AQPM): the average is made over the periods of time where the queue is occu-

pied by at least one token (so-called queueTime).
• Average Total Period Method (ATPM): the average is made over periods measuring the elapsed time from con-

secutive departures of nodes.

The active period method (APM) is another accurate way to detect bottlenecks in manufacturing systems. The method
is highly accurate, not only giving the likelihoods of different processes being the (temporary) bottleneck, but also
estimating the improvement of the entire system capacity if the bottleneck(s) are improved. It is also possible to
observe the shifting of these bottlenecks over time. The APM may be determined as follows:

ΨAPM(w) = argmax
i∈{1,...,sN−1}

Φw,i with Φw,i = −w + argmin
t∈{w,...,sW +1}

{vnode
t,i = 0}, (2)

ΨAPM(w) = ΨAPM(w) ∪ ΨAPM(w − 1) if w > 1 and Φw−1,ΨAPM (w−1) > 0, (3)

where vnode
w,i gives the number of tokens that at time w are present in the node i and, by notation convenience, we

assume that vnode
sW +1,i = 0 for all i ∈ {1, . . . , sN − 1}. Expression (2) accounts for sole bottlenecks and expression (3) for
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shifting bottlenecks. As with AAPM, APM can also be seen as family of methods with variants. The following are
considered:

• Measured Period Method (MPM): the APM algorithm is applied over periods of measuredTime.
• Queue Period Method (QPM): the APM algorithm is applied over the periods of time where the queue is occu-

pied by at least one token.

2.2. Pipeline

Fig. 2. Pipeline of the solution

Regarding the pipeline for data acquisition, processing and output generation, this is depicted in Figure 2. Work-
stations in the shopfloor communicate with the Bosch proprietary MES directly. This has been achieved through a
long-term digitalization strategy. Older equipments can be replaced or connected through gateways. These equip-
ments usually supply more limited data which can nevertheless be useful. There are some other devices (such as
IoT ones) which can also be connected and that add some additional information. A MES service which handles
the communications with the machines, receives these requests which are separated by MPLs (see the different MES
Data Bridges in Figure 2). This decoupled approach makes it easier to perform maintenance on a MPL without dis-
turbing other MPLs in the same production facility. The requests are then injected into a Kafka cluster. This broker
has multiple topics, each one with a specific functionality. Data validation topics make sure that the events arrive in
the expected sequence. Any event which violates the constraints is removed. These topics work in parallel in order
to avoid disruption to the system’s processing performance. Different scenarios can run on top of the data as it will
be shown in Section 2.3. This allows us to pinpoint what would be the effect of certain actions. These scenarios are
then used as input for bottleneck simulation and thus identification. This will allow establishing some guidelines for
improvement. Besides these features, bottleneck prediction is also possible and is used to spot possible hindrances in
real time. Managers and operators in the production line are notified via a dashboard which displays warnings and
possible improvements. This allows for a more reactive approach which also contributes to an improvement of the
line’s performance.

2.3. Data Characterization

Production Line 7 was chosen as the use case application for this work. Every year, around 50.000 units of finished
goods are produced there in 2 to 3 daily work shifts. The line is also characterized by 18 workstations that may be
operated by 8 up to 14 operators with predefined balanced work. All processes should run synchronously, meaning
that, in theory, no part queues should exist in between consecutive workstations. All queues are ruled according
to first in first out (FIFO). Additionally, there are 2 workstations performing the exact same function in the line, in
parallel (branches), that have product quality verification equipment. After some process improvements under the Lean
philosophy, this line already possesses an overall equipment effectiveness (OEE) of 90%. Nevertheless, the company’s
objective is to eliminate performance outliers and to reach an efficiency level close to 100%, which translates into
greater production capacity. This is the main reason behind the application of the content of this work.
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Table 1. Characterization of the data sets of this use case, where the theoretical cycle time is 200 seconds.
ID Shift Type Date Duration Workers Production Quantities Quality % Reworks %

D01 Random 23/Nov/2020 08:08:21.848 14 (T1) 112 94.07% 0.726%
D02 Good 08/Feb/2021 08:08:33.519 14 (T1) 132 97.98% 1.260%
D03 Good 09/Feb/2021 08:05:13.552 14 (T1) 132 97.78% 0.782%
D04 Bad 17/Feb/2021 07:53:47.996 14 (T1) 98 72.59% 0.813%
D05 Bad 18/Feb/2021 07:59:28.464 14 (T1) 110 81.48% 0.416%

Table 2. Bottleneck results according to multiple bottleneck identification algorithms.
AAPM Variants APM Variants

ID Shift Type Production/Target AMPM AQPM ATPM MPM QPM
D01 Random 112/135 11,12 5 5 11 12
D02 Good 132/135 11,12 5 11,12 12,11 1,11
D03 Good 132/135 11,12 5 11 11,12 12
D04 Bad 98/135 11,12 5 11,5,9,12 11 12
D05 Bad 110/135 11,12 2 11,2,12 11 6

For algorithm validation, the company provided 3 types of data sets pertaining to the production line with the time
duration of a complete shift: one perceived as good, another chosen randomly and another perceived as bad. The
classification of these data sets was based on the following parameters presented in Table 1.

The notion of quality is defined by a Bosch key performance indicator (KPI) that uses information from the number
of all types of reworks, cycle times and overall working times. This parameter is important to calculate the well-known
KPI, OEE. Furthermore, these parameters characterise the problem data sets, and later help to explore the results
obtained by the different approaches. Table 2 shows the different bottleneck metrics that were used and their results
for the data set at hand.

3. Main Results

3.1. Data-Driven Discrete-Event Simulation

To better understand how the system behaves under different conditions, a discrete-event simulator for a gen-
eral manufacturing line was created based on the Python Package Salabim 21.0.4 (https://www.salabim.org/
manual/). All distributions are experimental distributions modeled from historical data. The discrete-event actions
are ruled by the formal model of a QDG (see Figure 1). The distributions belong to two main classes: distributions
of the rates of injection of new parts into the system, i.e., the number of parts being introduced at the start of the
manufacturing line, and distributions of the pair operator-machine modeling the processing times of a part. This will
act as the basis to run test scenarios as those featured in Table 3.

In order to be able to run the test scenarios mentioned in Table 3, some fitting was done to the real distributions using
the Python Package Scikit Learn 0.24.0 (https://scikit-learn.org/) and the kernel density estimate technique.
The inferred probability density functions (PDFs) have been approximated by histograms with 50 bins as depicted
in Figure 3. The histograms for the real distributions have been obtained using the total number of rows for data
set D01 while the simulated histograms are obtained through the collection of 1000 random samples from the fitted
distributions. The kernel distribution used for the rate of injection of new parts into the system was a Gaussian with a
bandwidth of 0.12. The pair operator-machine has also been fitted using a Gaussian kernel with a bandwidth of 0.10.

Simulation results show that, although workstation 11 is the main bottleneck identified by AMPM and MPM, a
hypothetical reduction up to 20% of the processing times of workstation 11 would not improve line performance.
The main reason is that work is distributed between workstation 11 and workstation 12. On the other hand, these
workstations are quality test machines for which processing times are quite difficult to improve since 100% testing is
mandatory. Such means that R03 will be excluded from the results analysis, since it is not realistic to be implemented
at the MPL at Bosch Thermotechnology.

https://www.salabim.org/manual/
https://www.salabim.org/manual/
https://scikit-learn.org/
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Fig. 3. (a) Real distribution of the processing time in Station 5; (b) Simulated distribution of the processing time in Station 5; (c) Real distribution
of the processing time in Station 11; (d) Simulated distribution of the processing time in Station 11. The simulated graphs are made by obtaining
1000 samples from the respective kernel distribution.

Table 3. Relevant experiments acting on the distributions modeling the processing times of workstations.
Scenarios Node ID Percentage Description

R01 all – Remove upper outliers of all nodes (α = 0.5)
R02 6 10% Reduce processing times of node 6 in 10%
R03 11 20% Reduce processing times of node 11 in 33%
R04 5 10% Reduce processing times of node 5 in 10%

Fig. 4. (a) Effects of reducing the time between injections on D01 and D02. (b) Bottleneck index variation for the original data and scenarios.

Figure 4(a) shows how reducing the time between injections (thus increasing the number of parts entering the line)
will affect the production. As expected, the response is not linear. In the case of D01 (random), increasing the number
of parts entering the MPL will also imply an increase in the production. However, in the case of D02 (good) which
is already near their saturation level, increasing the number of parts entering the line will not improve production.
Instead, it increases the bottleneck indexes of other workstations (by increasing the number of parts in queues) which
will not translate in better performance. These scenarios show that in balanced lines the rate of injection plays a
fundamental role.

Figure 4(b) exhibits the variation of the bottleneck indexes rate for the main bottleneck workstations with respect to
the scenarios R01, R02, R04. All scenarios impose more stress in the processing times of workstation 11 and generally
reduce the queue of workstation 5. As expected, because workstations 11 and 12 are in a bifurcation, the queue of
workstation 12 is generally increased.
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Fig. 5. Smoothness index variation for the original data and scenarios.

Fig. 6. Productivity results of the original data and scenarios.

Figure 5 shows the smoothness index mean and standard deviation of 12 simulations under the scenarios in Table 3.
The smoothness index is widely used as a metric for balancing MPL. Smoothness index is an index that becomes the
relative refining index of an assembly line balance. The smaller the smoothness index, the closer the model is to the
perfect balance [16, 17]. Since all scenarios increase the smoothness index of the original data set, we may conclude
that these scenarios make the line more unbalanced. On the other hand, Figure 6 shows the effect of the scenarios
on the production, by averaging the results of 12 simulations. Combining Figures 5 and 6, one can conclude that the
line is already quite balanced and variation in production is not derived from unbalanced task distribution but rather
by indirect factors such as the human factor. We point out that the data sets are for the same line, the same shift, the
same workers but for different production days. This suggests that an active action in the machine-operator pair that
is currently the bottleneck may be a valuable approach to improve the performance of a balanced manufacturing line.
For such approach by a production manager, bottleneck prediction information is of major importance.

3.2. Bottleneck Prediction

In order to understand the probability of bottlenecks occurring at some point in the future, labels must be defined
to which supervised learning techniques can be applied to solve this classification problem. Data set D01 will be used
and the setting of the reasonable time period for a bottleneck to occur will be considered. Each row of the data set is a
snapshot of the line at a certain point in time, where the two most significant line bottlenecks at the time are identified.
To create meaningful labels one can use for bottleneck prediction, it is required to define the minimum prevalence of
the bottleneck. If it is shifting all the time, then it makes no sense to consider it for classification purposes or expect that
a shift manager would have time to act on it. For this reason, three distinct cut-off durations are considered: 3 minutes,
5 minutes and 7 minutes. If the bottleneck stays active for longer than the cut-off duration, then it is considered as it
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is and not as a shifting bottleneck. Otherwise, it is a shifting bottleneck or a negligible one, and they are encoded by
the label value ’-2’. As an example, label ’11 12’ means that workstations 11 and 12 were the two most significant
bottlenecks at the time.

Table 4. Influence of cut-off duration in label distribution.
Most Representative Labels Relative Frequency Other Labels

Cut-Off Duration L1 L2 L3 P1 P2 P3 Number of Labels Remaining Frequency
3 minutes 11 12 -2 11 23.97% 21.07% 13.63% 51 41.33%
5 minutes -2 11 12 11 66.86% 12.23% 8.02% 29 12.89%
7 minutes -2 11 12 11 81.08% 7.22% 5.98% 17 5.72%

The effect of the cut-off duration is exhibited in Table 4. One can see that the cut-off durations significantly affects
the class balance of the data sets. When we consider the more extreme case, more than 80% of the bottlenecks do
not hold for more than 7 consecutive minutes. This is an expected result since we know that this is a highly balanced
MPL. In order to achieve a realistic labelling, we will use as baseline the data set created by the 5 minutes cut-off

duration. Shifting bottlenecks represent more than half of the data set and it is also not expected that the shift manager
is able to deploy any significant action in a timespan of less than 5 minutes. If this would be the case, by the time the
action was defined, the bottleneck would have shifted once again. This is one of the main concerns of the authors: not
only to predict bottlenecks, but to do it in a timely manner for people to be able to respond to them. It is of no use to
predict these effects, if no appropriate measures can be deployed in time.

To come up with a high performance classifier, several algorithms were tested. The summary of these methods
is presented in Table 5. The methods were applied on 41 different features, where 38 of them are part of a state
machine indicating whether a node (19 features) or a queue (19 features) is being populated at that particular moment.
This particular data set has a total of 1856 rows. Stratified K-fold cross validation on 70% on the data was used to
produce results with different validation subsets and create classifier metrics which are obtained over multiple runs.
The classifiers were validated in 30% of the data, to minimize overfitting. Tree based methods showed a significantly
better performance. The method with higher performance metrics was the Random Forest, but was closely matched
by a feedforward artificial neural network (ANN) i.e., the multi-layer perceptron.

Based on these results, we can conclude that bottleneck prediction is possible with very accurate results. Using
this information, it is possible to devise an Early Warning System (EWS) which can trigger line managers to act
accordingly in a reasonable timeframe.

Table 5. Prediction metrics for the data set D01, with 70% of stratified K-fold cross-validation and 30% of test data (where ”m-X” mean ”macro
X”, ”w-X” means ”weighted X”, and the values are the average of 4 runs).

Method w-F1-score (strat. K-fold) m-Precision w-Precision m-Recall w-Precision m-F1-score w-F1-score
Decision Trees 98.3% 88% 97% 92% 95% 89% 96%
Gaussian Naive Bayes 76.5% 41% 91% 62% 59% 37% 67%
Gradient Boosting 99.4% 90% 98% 93% 98% 91% 98%
K-Neighbors 100.0% 73% 98% 81% 97% 75% 98%
Logistic Regression 88.6% 72% 98% 76% 97% 74% 98%
Multi-layer Perceptron / LBFGS 97.8% 98% 99% 94% 99% 95% 99%
Naive Bayes / Multivariate Bernoulli 95.9% 99% 99% 94% 99% 96% 99%
Random Forest1 98.5% 98% 99% 94% 99% 95% 99%
Regularized Linear models / SGD 82.9% 63% 97% 66% 98% 64% 98%
Support Vector Machine 90.7% 66% 98% 65% 98% 66% 98%
XGBoost 98.3% 98% 99% 94% 99% 95% 99%
1 Bootstrap=False, criterion=entropy, max features=0.45, min samples leaf=4, min samples split=8, n estimators=100.
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4. Conclusions

This work had two main goals: to evaluate in which ways bottleneck simulation allows us to understand if bottle-
neck identification and direct action on the bottleneck in a highly balanced line has some real improvements, and to
validate if bottleneck prediction by classification methods could be used in a line which was already very balanced,
with an OEE upwards of 90%. It is common to see in literature performance improvements upwards of 10%, which
indicate that the MPL in those studies have quite some room for improvement (i.e. are unbalanced by nature). Devis-
ing measures that can be effectively used by shopfloor personnel needs to be the end goal since optimization is only
meaningful if it can be effectively applied to the context it relates to. It may not be physically possible to reduce sig-
nificantly cycle times in lines with these characteristics but there are other meaningful measures that can be adopted.
In the simulation scenarios, it became clear that the rate of injection in the first node of the system produces a relevant
strain, leading to a significant increase in the throughput of the line as a whole. Based on this, the authors recommend
that more experienced workers should be placed both in the first station of the line and also in those where bottlenecks
are most likely to occur such as test stations which generally require a higher know-how and experience to operate
due to their more complex inner workings. Then, bottleneck prediction frameworks can support shift managers in real
time to allow precise curative measures. As a future research direction, the authors would like to recommend assess-
ing the impact that these frameworks may have on a plant’s overall performance through the involvement of higher
management taking into account that the throughput of a MPL is not the only force at play.
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