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Motivation

Introduction
Algorithm

The Principle of Causality is fundamental to virtually all scientific 
studies. However, often we are unable to experiment with a system to 
witness the causes and effects it contains, so we must infer causality 
from collected data.

In this work, we describe a method for inferring causal relations 
through the computation of quantities called Mutual Informations 
(MIs). The graph can be pruned by further computing another 
quantities called Conditional Mutual Informations (CMIs). This shall 
serve as a first step for future analysis that involve the determination 
of root causes in real world systems, such as assembly lines. In fact, 
in this work, we shall apply the described methods to construct a 
network of causal relations of an assembly line from publicly available 
data [1].

The question at hand is if statistical analysis is sufficient for 
establishing a causal relation or if human judgment is always a 
necessity. There are attempts, such as Pearl's [2], to axiomatize 
causal inference. In this work, we shall use some causal arguments in 
order to construct a faithful causal network with the objective of 
reducing, as much as possible, the need for a human element in the 
process.

The first thing we need is to study the dependence between each 
pair of variables. One of the simplest ways of doing so is to measure 
correlations. This method is however, insufficient. We want a metric 
that can encompasses different types of distributions. A more robust 
approach is to compute pairwise mutual information instead. This 
quantity, computed for two continuous random variables, X and Y, is 
defined as

where fx, fy are the probability density functions for X and Y, 
respectively, and fx,y is the joint probability density function of X and Y. 
This is always a non-negative quantity, with equating 0 in the case of 
statistical independence for all values of X and Y. In fact, we shall 
assume that MI(X,Y)=0 implies there is no causal relations between X 
and Y.
Mutual information is tightly related with the concept of entropy, which 
for a continuous random variable X is defined as

We can write H(X,Y) = H(X) + H (Y) - MI(X,Y) , evidenced by Figure 
1). However, the continuous version of entropy has the caveat that it 
can be negative (see Figure 2).

1) Venn diagram indicating the mutual 
information - I(X,Y)) - corresponds to 
the entropy of the information that is 
both in X and Y. (Source: Wikipedia)

2) The orange distribution has entropy 0, the 
green has a positive entropy, and the blue 
negative, since we can state more precisely in 
this last one where a random sample will lie.

Finally, we can use Reichenbach's Common Cause Principle [3] in 
order to further prune the network. This principle states that if two 
events are correlated, then either they are directly causally linked or 
there's a common cause between the two (see Figure 3).

This principle can be included in a new quantity, called conditional 
mutual information, that is, the mutual information between X and Y 
conditioned to Z. It is defined as

This quantity works similarly to MI and allows to exclude edges 
between X and Y, if conditioned by Z, when CMI is null. We could also 
compute CMIs conditioned to more than one node, but it might not be 
worth it due to the time and memory required.

3) Representation of Reichenbach's Common 
Cause Principle: A and B are correlated, but 
there's no direct causal relation between the 
two since they are caused by C. (Source: 
Stanford Encyclopedia of Philosophy)

In order to construct a causal network, we shall take each variable 
as a node of the network and draw edges whenever MI exceeds a 
given threshold. We can use time in order to decide the directions of 
the edges and at the same time exclude edges between simultaneous 
variables.

The method to compute either entropies, MIs, or CMIs is very 
similar. We define probability distribution functions (pdf's) 
histogramming the variable data, substitute them in the formula and 
sum over all the bins multiplied by their distance. This method is 
dependent on the number of bins, so we used Freedman–Diaconis 
rule [4] to compute the optimum bin distance for integration. The code 
is available in [5].

This code was developed in Python, for which there are already 
packages that compute these quantities. However, our code was 
twice as fast as SciPy's differential_entropy function when tested for 
uniform, normal, or exponential distributions and provided more 
accurate results for the first two. Furthermore, it allows us work with 
sparse pdf’s decreasing the consumption of memory.

Edges are draw between pairs of non-simultaneous variables 
whose MI exceeds a threshold. The threshold is chosen by the 
Kneedle method [6] as the elbow of the distribution of MIs (see Figure 
4).

Figure 5, below, represents the causal relations between variables 
in a real assembly line using this method. Each node represents a 
station of the assembly line and can contain more than one variable, 
thus the graph contains multiple edges. Some stations don’t take 
numerical measurements, thus no connections appear.
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4) Histogram of the mutual informations 
between variables in an assembly line 
data. The orange line indicates the elbow 
of the curve, used as the threshold for 
drawing edges. This method allows us to 
keep only the relevant MIs compared with 
the bulk.

5) Continuous causal relations in an assembly line with 4 lines and 52 stations.
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